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AN ELECTROHYDRODYNAMIC METHOD OF RETARDING THE 
TRANSITIONOFA BOUNDARY LAYER* 

A.P. KURYACHII 

The possibility of a downstream displacement of the point of transition 
of a laminar bonndary layer to the turbulent mode, as a result of electro- 
hydrodynamic (EHD) action on the boundary layer flow is considered. A 
method based on using the electrostatic volume forces appearing when a 
charged medium flows in an electric field, may turn out to be one of the 
novel, effective and economic methods of controlling the boundary layer 

/l/. The assessment of the result of EHD action on the position of the 
transition point is obtained below using the results of a calculation 
of the spatial amplification factors of small perturbations of the 
Tomlin-Schlichting wave type in the EHD boundary layer, and the &method 
of predicting the transition /2/. 

1. Consider the flow of a viscous incompressible fluid past a semi-infinite dielectric 
plate with relative permittivity h, with the flow velocity denoted by u_. The coordinate 
system chosen has its origin at the leading edge of the plate , the x axis is directed along 
the surface parallel to the flow velocity vector, and the y axis is perpendicular to the 
surface. It is assumed that semi-infinite grid electrodes p1 and pa, not affecting 
the gas flow (Fig.l), are erected on the plane perpendicularly to the direction of the on- 
coming flow. The distance between the electrodes is 1, and their dimensionless coordinates 
are z1 and x2. The earthed electrode p2 is an ion collector, and the emitter electrode pl 
simulates the unipolar charge sources situated upstream /3/. An electrode rs, modelling 
the electrode used to impart a definite form to the ionic flow is placed inside the plate, 
parallel to its surface, at a distance y, between r1 and pr. 

It is assumed that +<O (I), so that the Reynolds number determined over the length 1 
is characteristic for the boundary layer between the electrodes. 

The system of electrogasdynamic equations describing the steady flow of a viscous incom- 
pressible gas with unipolar charge, has the following form in dimensionless coordinates /3, 4/: 

Vr:E=O, VE=q 

Here $ is the hydrodynamic stream function, E = (E,,E,) is the electric field vector, 
q is the volume charge density, Re= u,llv is the Reynolds number, a =Ee-'is, %= v/D is the 
ratio of the kinematic viscosity of the gas to the ion diffusion coefficient, il' z @(@I*) is 
the EHD interaction parameter, p and e0 are the density and absolute permittivity and b 
is the ionic mobility. 

If we use a corona discharge as a source of unipolar charge, then J,-1 151, N wIO-~ 131. 
In this case we can write, for the values of the Reynolds number ranging from 186 to l(j:, 
N = ke, where k = 0 (1). 

The set of equations (l.l), (1.2) can be solved using the following boundary conditions. 
For the stream function we have the conditions of adhesion to the plate surface and a uniform 
stream at infinity. The electrical parameters in the interelectrode region are found by 
Specifying, on the latter, the electric potential distribution. We speeify on the emitter 
the initial volume charge density distribution. As y -00, the component E, of the 
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electric field vector is constant between rl and rz. The 
following conditions must hold on the dielectric surface of 

'5 
f 40-Y. 

;I; the plate: 

Iy=o 
El, = E,,, &,+ErEZy=u, El,*-;+0 (1.3) 

u, - 
where the indices 1 and 2 refer, respectively, to the region 
of flow and the region within the plate, and 0 is the 
surface charge density. Below we shall consider a dielectric 
surface not absorbing an electric charge, and in this case 

Fig.1 
we shall have 0 = 0. 

In addition, thevalues of the charge at the collector, 
also as y +oo, must in general be given for the last elliptic equation of (1.2). Should 
we however not plan to investigate the structure of the diffusion layer near the collector 
/5/P which falls outside the scope of this paper, then as we shall show later, there will be 
no need to specify these conditions. 

2. The solution of (l.l)-(1.2) is obtained in the form of expansionsinterms of the 
small parameter E /6/. 

In the region with characteristic dimensions z -1, y -1, the gas velocity is given in 
the basic approximation by u =@/ay=i, u = -&#/ax = O,and the electric parameters are 
described by the system of equations 

v*c$?=-q, (‘-~)$+$L?!L+q%o (2.1) 

within the region of flow, and by the Laplace equation 

V'p = 0 (2.2) 

within the plate, where wehaveintroduced the electric potential cp. 
To construct a solution of system (2.1), (2.2) satisfying, apart from the boundary con- 

ditions, conditions (1.3), we must consider the ionic diffusion layer on the dielectric surface 
of the plate appearingas a result of the last condition of (1.3). The layer thickness depends 
obviously on the electric field component E, exerting the pressure on the ionic flow. The 
magnitude of this component can be controlled by means of the electrode rsr either by varying 
the potential distribution on it, or the distance y,. The magnitude of the accelerating-field 

& is basically determined by the potential difference between r1 and r2. When the 
accelerating field potential is close to its breakdown value and the velocityof flowu,-100 m/set 
we have E, w-1. Different solutions of the problem can be constructed, dependingonthemagnitude 
of E,. 

Let E,-P', where n-Cl is a parameter. The last condition of (1.3) yields an estimate 
for the diffusion layer thickness 6, m@+', in which we use the independent variables x, Y = 

happy and the expansions 

E, (5, y; E) = E,C (2, Y) + E2Ex10 (I, I') + . . (2.3) 
E, (5, y; E) = En i?,; (2, y) f E@&J: (x, y) + . . . 

q (z, y; E) = E"-"Q~ (5, Y) + Q1 (5, Y) + . . 
u (5, y; E) = E’-%, (Z, Y) + . . ., u (6 y; E) = 

E3-2*Yp (T, Y) + . . 

&&stituting (2.3) into (1.2) we obtain a set of equations for the ionic diffusion layer 
in the main approximation 

When the characteristic charge density in the corona discharge is 
U_ > 100 m/sect we have in the external region of the flow q-1 and 

E, (5, y; E) = E,, (I, y) i . . ., E, (5, y; 8) = 
8” Ev, (5, y) + . 

q (5, y; 4 = !70 (4 Y) + ’ . 

(2.4) 

IO+ Wm3, 1 elm, 
the expansions 

(2.5) 

Using the last two conditions of (1.3) and matching (2.3) with (2.5), we obtain the 
following boundary conditions for the last equation of (2.4): 

5 E,",=&$ 
dEO 

dY1 
Y-+cG: 'o-to aY 

(2.6) 



where Ey,@) is the principal term of the expansion of the electric field inside the plate, 

of the form (2.5). 
In addition, the matching of (2.3) with (2.5) yields the conditions 

Em,’ lx) = E,o (x, 0)s Evoo (z, Q)) = Eye (x, 0) 

The solution of equations (2.4) with boundary conditions (2.6) 

E;,(X,Y)=E+, - 

has the form 

(2.7) 

(2.8) 

The function EyOW (z, 0), appearing in the solution (2.8) is found from the first condition 

of (1.31, and to find E,(r) we must considerthe following approximation in the diffusion 

layer. For the functions EY10 and Q1 we obtain the problem 

(2.91 

(2.10) 

(2.11) 

Integrating Eq.(2.10) is Y froN 0 to 00 and in x from r1 to x, and taking into 
account (2.9), (2.6), (2.7), (2.11), we obtain the relation 

E,o(r,O)~Qo(r.Y)dY=--h~ Qo(d’)E,d~~o)dr 
0 x1 

(2.12) 

Equation (2.12) has a simple physical meaning. The electric current in the diffusion 
layer passing across a section x, is equal to the current flowing to this cross-section from 
a direction perpendicular to the plate surface along the outer, diffusion-free region. Using 
(2.12) we obtain the following integral equation for determining the function E,(x)= E,,(x,O) 

Eye (x,0) = e,E$ (cr. 0)- E;; (zr 0) f qo (z, 0) E,o (I, 0) ds 
ZL 

(2.13) 

The electric parameters of the flow were computed using the following algorithm. A 
difference mesh was constructed between the electrodes , and certain values of the function 

E~(~)(z,o) were assigned at it nodes on the plate surface. A method of consecutive approximations 
was used to solve the system of equations (2.1) /7/. A value of the potential was specified 
at the electrodes rl and T,, and the initial charge density on Tl as IJ- OO. A distribution 
dqidy = --enEy&,O) was taken at the boundary y= o where the function &(z,O) was given by 
(2.13) whose right-hand side contains the values of this function obtained from the previous 

iteration and E,, (x.0) = E,E~(*) (t, 0) is taken from the first iteration. Equation (2.2) was 
then solved for the given distribution a~@, O)/dy == --E~E,,~(~)(z,O) and potentials of the electrodes 
r1, r,, ra * The procedure was repeated for the second specified distribution E,o")(r,O), and its 
correctvalueswere determinedateach nodeofthe difference meshby the methodof secants using 
the first condition of (1.3). 

The functions E, (x) = EIID (I, 0), EyO (')(z,O) computed in this manner make it possible to 

determine the electric field and the charge distribution in the diffusion layer (2.8). 

3. Having calculated the electric parameters in the main approximation, we can find the 
perturbations of hydrodynamic functions caused by the EHD action. As a result of substituting 
the expansions for the stream function q(z, y;e) = y + E&(X, y)+ . . . and electric parameters 
(2.5) into (l.l), we obtain the second approximation problem in the region of inviscid flow, 
taking both the thickness of the boundary layer displacement /6/ and EHD action into account 
(the parameter k was defined above) 

v2 agr ( > aso 
al = kE,o ay (3.1) 
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(3.2) 

where UPa (.z,y) = o(y) in the oncoming flow. 
Since problem (3.11, (3.2) is linear, its solution can be sought in the form of the 

superposition & =qno +$21r where the function $:eo satisfies the Laplace equation ma 
boundary ctDnditions (3.2) and is known /6/, while lPn1 satisfies Eq. (3.1) with zero boundary 
conditions. 

Consider the boundary layer flow using the new variables 2,~ =y[e and expansions for the 
stream function * Is. y; E) = 8x1 fz,z)S- &a k 2) + ’ ’ . t substitution of which into (1.11 leads 
to the following equation for x1: 

(3.3) 

The boundary conditions for this equation are determined by matching x1 with the solutions 
in the region of inviscid flow and in the diffusion layer. We shall show that these conditions 
have the usual form 

*( x, x)=i, xl(x?v= +.(x:0)=0 (3.4) 

We have the following equation and a single boundary condition for the second approximation, 
taking the conditions of matching at the outer boundary of the boundary layer into account: 

13.5! 

(3.61 

The solution in the diffusion layer will be obtained for the case R = '/se 
Using the diffusion layer variables z,Y =s-%y and substituting the expansion (2.3) and 

* = EQy"I (2, Y) + &W2 -+- . . 1 into (1.11, we obtain 

which on integration yields, together with the expressions (2.8) and conditions of adhesion, 

Matching these expressions with the solution in the boundary layer, we find the unknown 
functions appearing in (3.7) and boundary conditions for the equations (3.3), (3.5). 

ELAL(r)Yw42(~)l- 
dY 

+A,(x)Y2+ 
i 
-$+E,o(r,0) t A,@)] y + 

2kh-‘I?,, (I, 0) lu 
I- fJexp(kE_Y) 

i--B 

(3.7) 

A,(x)=O, A,(+$$-(x,O), A,(s)=0 

A,@)=--+$$ .%(s)&o(r,0) 

x&O)=+- (s,o)=xz(5,o)===o 

~(z,O)=- WkT?&c (5, 0) In (11 B) 

(3.8) 

Changing now to the Blasius variables I, n = z/VT", x1 --J& (rl), XP = fGt* 65 rl)* and using 

(3.3)-_(3.8), we obtain the following problems in the boundary layer (a prime denotes differ- 
entiation with respect 
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Squally useful two-term expansions for the +gitudinal Velocity and the curvature of its 

profile have the following form in the boundary layer: 

f';ir;(;Efl' (tl) +_a &' (2, rl) + 2kk-%0ln [I - (3.9) 

,s-% I/zrl)lJ 
p"' (2, ,,) = f;' (tl) - E'/O 2k?~fh&,E,~ exp (liEa.-‘+q) X 

II - p exp (L?%,E-'~~ fGjW2 + ef,"'@, ~0 

(3.10) 

4. Equations describing the development of small perturbations on the electrohydrody- 

namic boundary layer are derived, as in the linear theory of stability, by linearizing the 
complete system of electrohydrodynamic equations and the corresponding boundary conditions. 
Here we can also show that to a first approximation the perturbations in the electric flow 
parameter do not occur in the equations describing the perturbations of the hydrodynamic para- 

meters. PUS t&e stability of the boundary EHD layer can be studied within the framework of 
the analyis of the Orr-Sommerfeld equation. 

It should be noted that although the terms in the boundary layer equations connected with 
the non-parallelism of the flow are of the same order as the terms governed by the EHD action, 
nevertheless, since the problem of stability is linear, the principle of superposition holds 
and the effects mentioned can be taken into account independently. 

The two-dimensional perturbations of the stream function $(z, y,t) are sought in the form 

/8/ 

and this leads to the Orr-Sommerfeld eigenvalue problem 

vIv - 2c% + a'v = iR [(af’ - FR) (v” - a%) - czf"'v1 (4.2) 

v(0) = v' (0) = 0; L'+ 0, u'- 0 as 9--f" 

Here n is the Elasius variable introduced above, R = (zRe,)‘/t, t is the time, a (2) = 
a, (5) + iCZ.i (Z) is a complex function, F ==ov/u~~ is a frequency parameter, o is the perturba- 
tion frequency, r. is the coordinate of a certain fixed cross-section, and the functions 

f'(? rl)? f" (5, rl) are given by expressions (3.9), (3.10). 
Problem (4.2) was solved by reducing it to a Cauchy problem using the procedure of orthog- 

onalization /9/. 
The position of the transition point of the boundary later where it changes from the 

laminar to the turbulent mode, was estimated by calculating the spatial amplification factors 
of small perturbations /lo/ representing, at O= const, the ratio of the perturbation amplitude 
at the point x, to its magnitude at x0 of the lower branch of the neutral stability curve 

.=er,li(s,"~~d~]=,.p!_lEa,dRj 

x. 

Using the solution of problem (4.2) we determine, in each cross-section x, the values of 
the rate of growth of the perturbation ai as a function of the frequency parameter P. Next 
we construct an envelope of the curves In a = f(Re,), where Rs, =zRe,, which determines the 
values of the maximum growth coefficients a,,,. Adopting a definite value of In a, at the 
transition point, we can find the Reynolds number Re, of the transition. 

5. We have carried out the computations for the following values of the parameters of 
the problem: Rel = 1.5.10'. K = 1, E,, = 3, h = 0.3, ~1 = *J'~, us = 0.5. The potential c.= 3 is specified 
on the whole emitter rt, and the initial charge density Q* = 3 on its segment Ody<0.05. 
The potential distribution on the control electrode PJ was given in the form 

cp (r, -Y3) = CF. Ilk - 12) i A an In (2 - z*)l). A = 0.1 

The effect of such parameters as the electrode potentials and initial charge density 9., 
on the result of the EHD action on the boundary layer, is of interest. The role of the para- 
meter T, is clear: as the emitter potential increases, the magnitude of the accelerating 
field &(z, 0) increases approximately in proportion and the EHD action increases. The effect 
of the charge density manifest itself through the variation in the function PC=), appearing 
in (3.91, (3.10). Using (2.81, (2.13), we obtain the following expression for this function: 

It is clear that the values of P(Z), increase as the charge density increases, 
also enhances the EHD action. The effect of the magnitude of the compressing field 
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(the parameter A) is contradictory. On the one band, increasing .?&(1,0), leads, according to 
(3.101, to an increase in the absolute magnitude of the curvature of the velocity profile in 
the boundary layer, on the other hand the thickness of the region in which the increase in 
the curvature occurs is reduced, and this weakens the result of the END action. Computations 
have shown that the optimal mean Value of the function EyO(z,O) is approximately -1, and we 
have the corresponding value A = 0,l. 

It whould be noted that, according to the computations carried out, the charge gradients 

c+qoi”Y I appearing in (3.1) are small within the ion stream, of the order of 10-' -- lit-:'. For this 
reason the values of the function a$&, obtained by solving (3.1), and of the functions a@*cx. 

o)/~~,~~~(~,o~~~~~~ appearing in the boundary layer problem, are mush less than unity. During 
the calculations the functions were assumed to be equal to zero. 

Fig.2 Fig.3 

Figs.2 and 3 shows the results of the calculations. Fig.2 shows the dependence of the 
perturbation growth rate a, on the local Reynolds number Re,, and Fig.3 shows the same rela- 
tions for the function lu a. The dashed line in these figures show the corresponding relations 
for the Blasius flow, and the solid lines show the results of the calculations including the 
EHD contribution. The numbers indicate the values of the parameter F.lO", for which the 
computations were carried out. The range (i - 2.5).10* of Reynolds number corresponded to the 
interelectrode gap. 

According to /ll/, the transition on the flat plate takes place at Re, = 2.8.108. By 
determining the value of Ino,, corresponding to this value of the Reynolds number in the case 
of Blasius flow, we obtain the following value of the transition Reynolds number for the EHD 
boundary layer: Re, = 3.16.1U6. Thus, according to our calculations the EHD action can be expected 
to lead to an approximately 13% increase in the value of the Reynolds number. 

The author thanks M.N. Kogan for suggesting the problem, and fox his interest shown, and 
V.V. Mikhailov and A.M. Tumin for useful discussions. 
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ON CERTAIN CONSERVATION PROPERTIES IN GAS DYNAMICS* 

A.I. GOLUBINSKII and V.N. GOLUBKIN 

A previously unknown invariant of the vertex lines of a stationary baro- 
tropic, ideal gas flow is discovered, An analogue of this invariant and 
of other invariants of the stream and vortex lines is obtained for the 
more general case of non-barotropic flow. 

An equation is obtained describing the variation in the projection 
of the vorticity on the direction of the velocity in three-dimensional 
ideal gas flow. Examples are shown where the projection does not vary 
along the stream lines, and this yields an additional integral of the 
gas-dynamic equations. 

1. Consider the steady flow of an ideal compressible gas. We denote the velocity vector 
by v, 0 = rot v is the vorticity, p is the pressure and p is the density. In gas-dynamics 
thequantities conserved along the stream lines (stream line invariants) are of interest. We 
known, in particular, that along with the entropy (J the Ertel vortex potential E. = (o.Vo)/p 
is also conserved along the stream lines. 

In a barotropic gas flow /l-3/ Ei = (o.Vk),'p serves as the stream line invariant 

(1.1) 

where h is an arbitrary function, constant along the stream lines 

v.Vh =o (1.2) 

Relations (l.l), (1.2) express the Euler-Ertel theorem /l/ for a compressible barotropic 
gas. 

We must also establish the invariants of the vortex lines. The Bernoulli function H 
represents one of these invariants: 

We find that the relations are definitely commutative with respect to interchange of the 
vectors v and 0. This yields a new invariant of the vortex lines and is expressed by the 
following theorem. 

Theorem. Let ~1 be a twice continuously differentiable function constant along the 
vortex lines of the continuous barotropic gas flow 

o.vp = 0 (1.4) 

Then the quantity 61~ = v.'ip will also remain constant along the vortex lines 

0.v (\..Cp)= 0 (1.5) 

To prove the theorem we transform the left side of expression (1.5) using the well-known 
formula for the gradient of a scalar product. We obtain 

~.v(v.V~)=o.(v.v)v~ + o.(Vp.V)v (1.6) 

Applying the operator v.V to (1.4), we reduce the first term on its right-hand side 
to the form 

0. (V.V)VP = --P11. (v.V)o (1.7) 
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